您当前的位置:首页 > 教师演讲稿 > 正文

函数的定义教案(实用19篇)

时间:2023-12-08 09:56:45 作者:QJ墨客

教学工作计划也是教师提升自身教学能力的一种方式,通过不断优化计划,提高教学水平。教学工作计划是指教师在一定的时间内,根据学科教育的要求和实际情况,合理安排教学活动的一种书面材料。编写教学工作计划时,要充分考虑学生的评价与反馈,及时调整教学策略和方法,以提升教学效果。以下是一些上级教育机构提供的教学工作计划范文,供大家参考学习。

一次函数教案

通过对这节课的教学研究,我深刻地认识到新课程背景下的数学课堂教学应注意:

1、教师要“放得开”,做一个边缘人。我们应该充分相信学生,给学生成长的机会和空间。不再搞“包办代替”,不能急性子。凡是学生能做的,就应该让他们自主去做;凡是学生之间能合作完成的,就应该让他们自主探究。给学生一滴水的机会,也许他会收获一片海洋。

2、要做到“问题引领”,用问题牵引学习。本节课的设计给予学生的基础,设计了多个学生容易解决的问题串,这样,能够在循序渐进中学到知识。

3、要创造性地使用教材。教学过程中,不应局限于教材,而应充分利用教材这个平台,伸向与教材有关的领域。数学是思维的体操,因此,若能对数学教材科学安排,对问题妙引导,有意识地引导学生有意识地主动学习更多更全面的数学知识,变“传授”为“探究”,充分暴露知识的发生发展过程,以探索者的身份去发现问题、总结规律。

4、注重探究,体验知识的形成过程。数学教学从本质上讲,是教师和学生以课堂为主渠道的交流活动,是教师和学生在某种教学情境中的探究活动。这节课教师本着“让学生充分经历知识的形成、发展和应用过程,充分体验数学的发现和创造历程”的教学理念,对教学过程和教学手段作了充分的准备。整节课学生在教师的引导下逐步探索、不断发现,品尝到了数学学习的乐趣,教师的主导作用和学生的主体地位都得到了很好地体现。

总之,我们的教学工作是一项内涵丰富的系统工程。教学中用问题引领学生,提升效率,不是一朝一夕就可以取得明显成效的,它更是一个复杂的课题。“冰冻三尺,非一日之寒”,在教学中必须循序渐进,长期实践,与时俱进,争取做教学改革的有心人,只有这样才能在教学研究工作中有所作为。因此,在实际教学中,我们应时刻以学生为中心,充分给予学生成长的时间,鼓励学生自主探究,采用适时激励与点拨的方法使学生的思维活跃起来,让课堂真正成为学生学习、发现的乐园。

函数教案

即:一角的正弦大于另一个角的余弦。

2、若,则,。

3、的图象的对称中心为(),对称轴方程为。

4、的图象的对称中心为(),对称轴方程为。

5、及的图象的对称中心为()。

6、常用三角公式:。

有理公式:;。

降次公式:,;。

万能公式:,,(其中)。

7、辅助角公式:,其中。辅助角的位置由坐标决定,即角的终边过点。

8、时,。

9、。

其中为内切圆半径,为外接圆半径。

特别地:直角中,设c为斜边,则内切圆半径,外接圆半径。

10、的图象的图象(时,向左平移个单位,时,向右平移个单位)。

11、解题时,条件中若有出现,则可设,。

则。

12、等腰三角形中,若且,则。

13、若等边三角形的边长为,则其中线长为,面积为。

14、;。

函数数学教案

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。

函数数学教案

3.探究发现任意角 与 的三角函数值的关系.

利用诱导公式(二),口答下列三角函数值.

(1). ;(2). ;(3). .

喜悦之后让我们重新启航,接受新的挑战,引入新的问题.

由sin300= 出发,用三角的定义引导学生求出 sin(-300),sin1500值,让学生联想若已知sin = ,能否求出sin( ),sin( )的值.

1.探究任意角 与 的三角函数又有什么关系;

2.探究任意角 与 的三角函数之间又有什么关系.

遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.

诱导公式(三)、(四)

给出本节课的课题

三角函数诱导公式

标题的后出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.

的三角函数值,等于 的同名函数值,前面加上一个把 看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)

设计意图

简便记忆公式.

求下列三角函数的值:(1).sin( ); (2). co.

设计意图

本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的良好习惯.这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的.

学生练习

化简: .

设计意图

重点加强对三角函数的诱导公式的综合应用.

1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.

2.体会数形结合、对称、化归的思想.

3.“学会”学习的习惯.

1.课本p-27,第1,2,3小题;

2.附加课外题 略.

设计意图

加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”.

八.课后反思

对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。

然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。

在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。用全新的理论来武装自己,让自己的课堂更有效。

函数教案

1.能从二倍角的正弦、余弦、正切公式导出半角公式,了解它们的内在联系;揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识.并培养学生综合分析能力.

2.掌握公式及其推导过程,会用公式进行化简、求值和证明。

3.通过公式推导,掌握半角与倍角之间及半角公式与倍角公式之间的联系,培养逻辑推理能力。

二、过程与方法。

2.通过例题讲解,总结方法.通过做练习,巩固所学知识.

三、情感、态度与价值观。

1.通过公式的推导,了解半角公式和倍角公式之间的内在联系,从而培养逻辑推理能力和辩证唯物主义观点。

2.培养用联系的观点看问题的观点。

【教学重点与难点】:

重点:半角公式的推导与应用(求值、化简、证明)。

难点:半角公式与倍角公式之间的内在联系,以及运用公式时正负号的选取。

【学法与教学用具】:

1.学法:

(1)自主+探究性学习:让学生自己由和角公式导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。

(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.

2.教学方法:观察、归纳、启发、探究相结合的教学方法。

引导学生复习二倍角公式,按课本知识结构设置提问引导学生动手推导出半角公式,课堂上在老师引导下,以学生为主体,分析公式的结构特征,会根据公式特点得出公式的应用,用公式来进行化简证明和求值,老师为学生创设问题情景,鼓励学生积极探究。

3.教学用具:多媒体、实物投影仪.

【授课类型】:新授课。

【课时安排】:1课时。

【教学思路】:

一、创设情景,揭示课题。

二、研探新知。

四、巩固深化,反馈矫正。

五、归纳整理,整体认识。

1.巩固倍角公式,会推导半角公式、和差化积及积化和差公式。

2.熟悉"倍角"与"二次"的关系(升角--降次,降角--升次).

3.特别注意公式的三角表达形式,且要善于变形:

4.半角公式左边是平方形式,只要知道角终边所在象限,就可以开平方;公式的"本质"是用?角的余弦表示角的正弦、余弦、正切.

5.注意公式的结构,尤其是符号.

六、承上启下,留下悬念。

七、板书设计(略)。

八、课后记:略。

函数数学教案

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

过程与方法。

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感与价值观。

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

1、掌握函数概念。

2、判断两个变量之间的关系是否可看作函数。

3、能把实际问题抽象概括为函数问题。

1、理解函数的概念。

2、能把实际问题抽象概括为函数问题。

一、创设问题情境,导入新课。

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

幂函数的定义

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

当a取非零的有理数时是比较容易理解的,而对于a取无理数时,初学者则不大容易理解了。因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续性的极为深刻的知识。

函数教案

学生能理解函数的概念,掌握常见的函数(sum,average,max,min等)。学生能够根据所学函数知识判别计算得到的数据的正确性。

学生能够使用函数(sum,average,max,min等)计算所给数据的和、平均值、最大最小值。学生通过自主探究学会新函数的使用。并且能够根据实际工作生活中的需求选择和正确使用函数,并能够对计算的数据结果合理利用。

学生自主学习意识得到提高,在任务的完成过程中体会到成功的喜悦,并在具体的任务中感受环境保护的重要性及艰巨性。

sum函数的插入和使用。

函数的格式、函数参数正确使用以及修改。

任务驱动,观察分析,通过实践掌握,发现问题,协作学习。

excel文件《2000年全国各省固体废弃物情况》、统计表格一张。

1、展示投影片,创设数据处理环境。

2、以环境污染中的固体废弃物数据为素材来进行教学。

3、展示《2000年全国各省固体废弃物情况》工作簿中的《固体废弃物数量状况》工作表,要求根据已学知识计算各省各类废弃物的总量。

函数名表示函数的计算关系。

=sum(起始单元格:结束单元格)。

4、问:求某一种废弃物的全国总量用公式法和自动求和哪个方便?

注意参数的正确性。

1、简单描述函数:函数是一些预定义了的计算关系,可将参数按特定的顺序或结构进行计算。

在公式中计算关系是我们自己定义的,而函数给我们提供了大量的已定义好的计算关系,我们只需要根据不同的处理目的去选择、提供参数去套用就可以了。

2、使用函数sum计算各废弃物的全国总计。(强调计算范围的正确性)。

3、通过介绍average函数学习函数的输入。

函数的输入与一般的公式没有什么不同,用户可以直接在“=”后键入函数及其参数。例如我们选定一个单元格后,直接键入“=average(d3:d13)”就可以在该单元格中创建一个统计函数,统计出该表格中比去年同期增长%的平均数。

(参数的格式要严格;符号要用英文符号,以避免出错。)。

有的同学开始瞪眼睛了,不大好用吧?

因为这种方法要求我们对函数的使用比较熟悉,如果我们对需要使用的函数名称、参数格式等不是非常有把握,则建议使用“插入函数”对话框来输入函数。

用相同任务演示操作过程。

4、引出max和min函数。

探索任务:利用提示应用max和min函数计算各废弃物的最大和最小值。

5、引出countif函数。

探索任务:利用countif函数按要求计算并体会函数的不同格式。

1、教师小结比较。

2、根据得到的数据引发出怎样的思考。

四、       。

1、废弃物数量大危害大,各个省都在想各种办法进行处理,把对环境的污染降到最低。

2、研究任务:运用表格数据,计算各省废弃物处理率的最大,最小值,以及废弃物处理率大于90%,小于70%的省份个数,并对应计算各省处理的废弃物量和剩余的废弃物量及全国总数。

1、分析存在问题,表扬练习完成比较好的同学,强调鼓励大家探究学习的精神。

2、把结果进行记录,上缴或在课后进行分析比较,写出一小论文。

1、让学生体会到固体废弃物数量的巨大。

2、处理真实数据引发学生兴趣。

通过比较得到两种方法的优劣。

学生的计算结果在现实中的运用,真正体现信息技术课是收集,分析数据,的工具。

通过类比学习,提高学生的自学能力和分析问题能力。

实际数据,引发思考。

学生应用课堂所学知识。

学生带着任务离开教室,课程之间整合,学生环境保护知识得到加强。

观看投影。

学生用公式法和自动求和两种方法计算各省废弃物总量。

回答可用自动求和。

动手操作。

计算各类废气物的全国各省平均。

练习。

练习。

用自己计算所得数据对现实进行分析。

应用所学知识。

练习并记录数据。

幂函数教案

难点:其一般的性质分析,再由性质得到一般图像。

三.教学方法和用具。

方法:归纳总结,数形结合,分析验证。

用具:幻灯片,几何画板,黑板。

四.教学过程。

(幻灯片见附件)。

1.设置问题情境,找出所得函数的共同形式,由形式给出幂函数的定义(幻灯片1?幻灯片2)(板书)。

2.从形式上比较指数函数和幂函数的异同(幻灯片3)。

3.利用定义的形式,判断所给函数是否是幂函数,并得出判断依据(幻灯片4)。

4.画常见的三种幂函数的图像,再让学生用描点法画另两种,并用几何画板验证(幻灯片5)(几何画板)。

5.用几何画板画出这五个幂函数的图像,观察图像完成书中幂函数的函数性质的表格,并分析得出更一般的结论(板书)(几何画板)。

幂函数的定义

当x为不同的数值时,幂函数的值域的不同情况如下:

1.在x大于0时,函数的值域总是大于0的实数。

2.在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

定义域。

当a为不同的数值时,幂函数的定义域的不同情况如下:

1.如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;2.如果同时q为奇数,则函数的定义域为不等于0的所有实数。

函数数学教案

(二)能画出简单函数的图象,会列表、描点、连线;。

(三)能从图象上由自变量的值求出对应的函数的近似值。

重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

难点:对已恬图象能读图、识图,从图象解释函数变化关系。

1.什么叫函数?

2.什么叫平面直角坐标系?

3.在坐标平面内,什么叫点的横坐标?什么叫点的.纵坐标?

4.如果点a的横坐标为3,纵坐标为5,请用记号表示a(3,5).

5.请在坐标平面内画出a点。

6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)。

我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x为自变量时,y是x的函数。

这个函数关系中,y与x的函数。

这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。

定义域确定函数定义域的方法总结

值域。

名称定义。

(1)化归法;(2)图象法(数形结合),

(3)函数单调性法,

关于函数值域误区。

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

“范围”与“值域”相同吗?

“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。

二.数学的学习方法。

1.数学要求具备熟练的计算能力,所以课后还有做足一定量的练习题,只有通过做题练习才能拥有计算能力。

2.课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。

3.数学公式一定要记熟,并且还要会推导,能举一反三。

4.数学重在理解,在开始学习知识的时候,一定要弄懂。所以上课要认真听讲,看看老师是怎样讲解的。

5.数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。

6.数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。

7.数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。

8.数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。

9.数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。

10.数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。

点击。

将本文的word文档下载到电脑,方便收藏和打印。

自定义函数实验心得体会

自定义函数是编程中的重要组成部分,也是实现代码重用的机制。在学习自定义函数的过程中,我们需要深入了解它的实现原理以及如何在实际编程中灵活运用。在本篇文章中,我将分享我学习自定义函数的心得和体会。

自定义函数是一段封装好的可重复使用的代码块,它被封装在一个名称下,来实现某种特定的功能。自定义函数可以被多次调用,重复使用,从而节省代码量,提高代码复用性和可维护性。自定义函数的基本语法包括函数名、参数列表、函数体和返回语句等。

第三段:实验过程中的收获。

在实验中,我通过编写多个自定义函数,加深了对函数的理解。在实践中,我学会了如何创建和调用自定义函数,以及如何在定义函数时设置参数和返回值。这使我更好地掌握了函数的使用方法和意义,并能够更好地运用自定义函数解决实际问题。

第四段:应用实例。

在应用自定义函数时,我们可以结合其他程序语言特性来实现更加复杂的操作。例如,我们可以结合条件判断语句、循环语句等实现更复杂的功能。自定义函数可以作为其他程序块的模块进行调用,是提高代码重用率和可维护性的不二选择。

第五段:总结。

总的来说,自定义函数是学习编程必须掌握的重要技能。在学习的过程中,要深入理解函数的基本概念,多写、多试、多调,才能带来更多的收获。在应用自定义函数的时候,我们要灵活运用各种语言特性,提高代码的重用和可维护性。自定义函数的使用不仅是一种工具,更体现了编程思维的核心精髓。

函数数学教案

(二)解析:本节课要学的内容指的是会判定函数在某个区间上的单调性、会确定函数的单调区间、能证明函数的单调性,其关键是利用形式化的定义处理有关的单调性问题,理解它关键就是要学会转换式子。学生已经掌握了函数单调性的定义、代数式的变换、函数的概念等知识,本节课的内容就是在此基础上的应用。教学的重点是应用定义证明函数在某个区间上的单调性,解决重点的关键是严格按过程进行证明。

二、教学目标及解析。

(一)教学目标:

掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。

(二)解析:

会证明就是指会利用三步曲证明函数的单调性;会求函数的单调区间就是指会利用函数的图象写出单调增区间或减区间;应用知识解决问题就是指能利用函数单调性的意义去求参变量的取值情况或转化成熟悉的问题。

三、问题诊断分析。

在本节课的教学中,学生可能遇到的问题是如何才能准确确定的符号,产生这一问题的原因是学生对代数式的恒等变换不熟练。要解决这一问题,就是要根据学生的实际情况进行知识补习,特别是因式分解、二次根式中的分母有理化的补习。

在本节课的教学中,准备使用(),因为使用(),有利于()。

DOS批处理

一、教材分析(说教材)。

1.教材所处的地位和作用。

本节内容是高中数学必修4第一章第七节的内容.它前承正弦余弦函数的图像和性质,后启正切函数的诱导公式问题.

2.教学目标。

知识与技能:

(1)能借助单位圆理解任意角的正切函数的定义.。

(2)能画出y=tanx的图像.。

(3)掌握正切线的基本性质.。

(4)让学生亲身经历数学研究的过程,学会应用类比推理与数形结合的思想处理问题.

情感态度与价值观:使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力;培养学生形成实事求是的科学态度和锲而不舍的钻研精神.通过学生自主探究小组合作交流的过程体验探索的乐趣,增强团队意识,增强学习数学的兴趣.

3.重点、难点以及确定的依据和处理的方法。

重点:正切函数的图像和性质是本节课的重点,其理论依据是任意函数的图像和性质都是紧密相连的,都是研究的重点对象.对于正切函数来说由于定义域的不连续性导致了图像的间断性.所以要正确探索出图像和性质.处理方法是类比正余弦函数的图像和性质的研究.

难点:画正切函数的图像.依据是正切线能准确画正切函数的图像,但不实用,在应用时一定要学会画简图.在难点的处理上我先让学生通过自己画出特殊角的正切线并平移到直角坐标系中,让学生体会图像与x轴的交点,再利用定义域找到图像间断处的渐近线(用虚线),然后找到一个周期内的几个特殊点,利用周期性画出其它区间的图像.

二、学情分析(说学法)。

学生已经有了研究正弦余弦函数图像和性质的经验,这种经验完全可以迁移到对正切函数图像和性质的.研究中,在心理上也具备了一定的分辨能力和语言表达能力.因此采用自主合作探究式学习方法,让学生自己通过自学和与他人合作的方式来完成学习任务.教师在重难点的地方给予提示和帮助即可.

三、教学策略(说教法)。

(一)教学手段。

一般对于三角函数性质的研究总是先作图像,再通过图像来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述.所以对正切函数仍然采用了这样的方法.先根据已有的知识(类比正弦函数和余弦函数的图像与性质)来研究正切函数的图像,然后再根据图像来研究性质.这样处理主要是为了给学生提供研究数学的直观视角,在图像的引导下可以更加有效地研究性质,加入感性思维的成分,并使数形结合的思想体现的更加全面.

(二)教学方法及其理论依据。

如何突出重点,突破难点,从而实现教学目标.我在教学中利用课前布置预习任务,课中学生讨论回答问题的形式进行教学,从而为重点和难点知识留下充分的学习时间.教学中坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的自主探究教学法.在学生课前看书、独立完成思考、小组合作探究讨论的基础上,在教师课前了解学生学情的前提下,让一部分学生回答提出的问题,其他学生进行质疑讨论,教师对学生的质疑点进行解释,最后老师再进行点评和补充.

四、教学流程。

(一)复习回顾:正弦函数和余弦函数;

利用单位圆中的正弦线作出正弦函数的图像.

(二)自主探究:

请学生课前自主学习课本35页7.1的内容,明确以下几个问题:

(1)正切函数的定义及定义域。

(2)正切函数值在每个象限的符号。

(3)什么是正切线?怎样作?

(4)正切函数是周期函数吗?如果是,周期与最小正周期分别是多少?

分组讨论后解答这几个问题。

通过学生自学探究,由学生自己把正切函数的定义以及相关问题,讨论并回答出来,教师对学生的一些知识疑惑点进行帮助提示.

2.正切函数的图像。

让学生类比正弦函数图像的画法自己尝试画出正切函数的图像,对学生画出的正切函数图像进行点评.以鼓励为主然后让学生想一想怎样可以画出整个定义域内的正切函数图像.

3.正切函数的性质。

通过多媒体展示,用平移正切线的方法,准确的画出正切函数的图像,并让学生看着图像再直观的理解性质.

(三)例题展示。

例1求函数《正切函数的定义、图像与性质》说课稿的定义域.。

设计意图:让学生会进行整体代换问题,加强对正切函数定义域的理解.

例2利用正切函数图像求满足条件的角的范围.

设计意图:强调学生要学会利用图像来做题,注意区间的开闭问题.

(四)课堂小结:学生自己先总结然后老师补充.

(五)思考问题:

1.正切函数是整个定义域上的增函数吗?为什么?

2.正切函数会不会在某一区间内是减函数?为什么?

五、作业布置。

完成相应的课后作业.

六、设计说明。

1.板书说明:侧黑板留给学生展示,前黑板用来展示多媒体.

2.时间分配:(一)五分钟(二)六分钟1.十分钟2.十二分钟3.五分钟。

(三)五分钟(四)一分钟(五)一分钟。

定义域确定函数定义域的方法总结

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄彼,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

“范围”与“值域”相同吗?

“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。

定义域确定函数定义域的方法总结

f(x)是函数的符号,它代表函数图象上每一个点的纵坐标的数值,因此函数图像上所有点的纵坐标构成一个集合,这个集合就是函数的值域。x是自变量,它代表着函数图象上每一点的横坐标,自变量的取值范围就是函数的定义域。f是对应法则的代表,它可以由f(x)的解析式决定。例如:f(x)=x^2+1,f代表的是把自变量x先平方再加1。x2+1的取值范围(x2+1≥1)就是f(x)=x2+1的值域。如果说你弄清了上述问题,仅仅是对函数f(x)有了一个初步的认识,我们还需要对f(x)有更深刻的了解。

指数函数教案

我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。

一、教材分析。

1、教材的地位和作用:函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

二、教学目标分析。

基于对教材的理解和分析,我制定了以下的教学目标。

3、情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。

三、教法学法分析。

1、教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。

2、教学:贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。

3、教法分析:根据教学内容和学生的状况,本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。

定义域确定函数定义域的方法总结

值域。

名称定义。

(1)化归法;(2)图象法(数形结合),

(3)函数单调性法,

关于函数值域误区。

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

“范围”与“值域”相同吗?

“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。

二.数学的学习方法。

1.数学要求具备熟练的计算能力,所以课后还有做足一定量的练习题,只有通过做题练习才能拥有计算能力。

2.课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。

3.数学公式一定要记熟,并且还要会推导,能举一反三。

4.数学重在理解,在开始学习知识的时候,一定要弄懂。所以上课要认真听讲,看看老师是怎样讲解的。

5.数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。

6.数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。

7.数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。

8.数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。

9.数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。

10.数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。

点击。

相关范文推荐

    与心得体会摘抄(模板18篇)

    在这个过程中,我不断总结经验,发现了很多有用的心得。以下是一些优秀的心得体会范文,希望对大家在写作心得体会时有所帮助和启发。摘抄是指从别的文献中摘取合适的词句、

    生态强国心得体会(精选20篇)

    通过写心得体会,我们可以对自己的所思所想进行总结,从而更好地认识自己。请大家看看下面这些精心挑选的心得体会范文,相信可以给你带来一些思考和收获。生态文明是当代中

    大班科学教案设计(精选19篇)

    大班教案的编写需要考虑学生的学习特点和兴趣,以及教学资源的合理利用。接下来是一些实用的大班教案范文,供教师们在教学实践中参考和借鉴。活动目标。1、观察骨骼的基本

    快递员工申请书(通用24篇)

    在撰写申请书时,要注意遵循相关的格式要求,比如字数限制、排版要求等。想要写一篇令人印象深刻的更多申请书吗?下面是一些成功的案例供大家参考和借鉴。尊敬的公司领导

    建设法规心得体会论文(专业20篇)

    心得体会是对自己内心深处的感情和思考的一种展示和沉淀。让我们来看看下面这些精选的心得体会范文,或许能够给你一些灵感与启发。学校建设是关乎教育教学质量的一个重要方

    座谈会上的领导讲话稿大全(22篇)

    领导讲话稿需要根据不同场合和受众的特点进行针对性的调整,以确保传达的效果和目标的实现。请大家参考下列范文,了解优秀的领导讲话稿结构和内容,以便更好地撰写自己的讲

    爱眼护眼光明未来观后心得体会(通用22篇)

    写心得体会的过程就是一个反思、总结和成长的过程,通过深入思考,我们能够更好地认识自己,并且不断提升自己。以下是一些在工作中总结的心得体会,其中包含了一些职场技巧

    危房安全管理协议书(优质17篇)

    在签署合同协议之前,应该对合同内容进行充分的了解和协商,确保自己的利益受到保护。以下是一些成功案例中使用的合同协议范本,供大家参考。乙方(以下简称乙方):为了加

    员工岗位安全职责心得(通用15篇)

    写心得体会可以增强个人的反思能力和批判性思维,培养学习和解决问题的能力。以下是小编为大家整理的心得体会范文,供大家参考和借鉴。1、在项目经理领导下,负责项目部安

    南昌租房合同(通用14篇)

    租房过程中,房东和房客之间的权益保障是一个重要的问题,需要依法规范。如果你对某个区域或者小区的租房情况感兴趣,可以看一下下面的租房总结,或许能给你一些参考。